Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
نویسندگان
چکیده
Knowledge of the cellular targets of ROS (reactive oxygen species) and their regulation is an essential prerequisite for understanding ROS-mediated signalling. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is known as a major target protein in oxidative stresses and becomes thiolated in its active site. However, the molecular and functional changes of oxidized GAPDH, the inactive form, have not yet been characterized. To examine the modifications of GAPDH under oxidative stress, we separated the oxidation products by two-dimensional gel electrophoresis and identified them using nanoLC-ESI-q-TOF MS/MS (nano column liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem MS). Intracellular GAPDH subjected to oxidative stress separated into multiple acidic spots on two-dimensional gel electrophoresis and were identified as cysteine disulfide and cysteic acids on Cys152 in the active site. We identified the interacting proteins of oxidized inactive GAPDH as p54nrb (54 kDa nuclear RNA-binding protein) and PSF (polypyrimidine tract-binding protein-associated splicing factor), both of which are known to exist as heterodimers and bind to RNA and DNA. Interaction between oxidized GAPDH and p54nrb was abolished upon expression of the GAPDH active site mutant C152S. The C-terminal of p54nrb binds to GAPDH in the cytosol in a manner dependent on the dose of hydrogen peroxide. The GAPDH-p54nrb complex enhances the intrinsic topoisomerase I activation by p54nrb-PSF binding. These results suggest that GAPDH exerts other functions beyond glycolysis, and that oxidatively modified GAPDH regulates its cellular functions by changing its interacting proteins, i.e. the RNA splicing by interacting with the p54nrb-PSF complex.
منابع مشابه
Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Cadmium-Stressed Arabidopsis Roots1[C][W]
NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in the glycolytic pathway. It has been widely demonstrated that mammalian GAPDH, in addition to its role in glycolysis, fulfills alternative functions mainly linked to its susceptibility to oxidative posttranslational modifications. Here, we investigated the responses of Arabidopsis (Arabidopsis thali...
متن کاملNuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots.
NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in the glycolytic pathway. It has been widely demonstrated that mammalian GAPDH, in addition to its role in glycolysis, fulfills alternative functions mainly linked to its susceptibility to oxidative posttranslational modifications. Here, we investigated the responses of Arabidopsis (Arabidopsis thali...
متن کاملOxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration.
Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that...
متن کاملDynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
BACKGROUND Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role. RESULTS We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased resistance to the thiol-oxidizing reage...
متن کاملPlant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 423 2 شماره
صفحات -
تاریخ انتشار 2009